
3. Effort to Diagno se the Error - Do not include effort spent in initial detection
e. No. of Runs to Diagnose _Elapsed Computer Tiom (Minute.)_

b. Wor king ~“ ime to Diagnose Hours

• 4. Category of Change

SOFTWA RE CHANGE P2QUIR~D

• Nature of Change

~~~~ Documentation (~‘reface or C~~~e~ts )
Fix Instructio n
Change Cons tents
Structural
Algorit huic
Other - Expla in

S~vrce of Bug

~~~ Rug essentially unrelated to previous corrections (i.e. usua l case of
bug just df.acovered)

E 1 Previous correction dLd not re~~ve the believed error (i.e., improper or
incomplete analys is)

0 New Bug, introduced by a previous correction (i.e., bug generation through
a correction).

TYPe of Bug

~~~~ Misinterpre tstion of Specificat ions Opera ting System
Wrong Specifications 

— Support Software
Incomp lete Specifications -Card Miapunched
Incorrect Sequencing of Computations 

— Other Explain
Incorrect Input Date (Type and Quantity)
Incorrec t Expressions
Incorrect Declaration
No Defense Against tnvslid Dsta

3. Difficul ty of Correction

a. No .of Pun. to Corrsct_Erapeed Conp uter Time Minutes)_~~b~ Working rime to Debug : Daya__jlours_
c. No. of Cards: Chonged_Addsd~~~Veleced_

6. Cooments (Uce Rav erse Side and Addi tional Sheets If Necessary)

30



3. 6. 6 The Present Status and Planned Activitj~~

¶ Problems 1 ,2 and 3 have been debugged by single programmers , that
is , by just their authors. A set of test data has been selected for problem
1, and the several versions of the f i rs t  program have been exercised with
this test data successfully.

It is planned to per form the additional debugg ing with other program-
mers  andto use the test data for the experimental small scale verification
of our theoretical work.

1 . M. Haistead , ‘ Software Physics ” , Basic Principles IBM Research
Report , RJ 1582 IBM Research , Yorktown Heights , N . Y .  May 1975.

3. 7 Micro  Reliabil i ty Models

by M. L. Shooman

3. 7 . 1 Introduction

Many previous software reliability prediction models by this author 1

and others2 have concentrated on the bulk (macro), aspects of a program.
This work involves a newl y developed micro ~~~~~~~~~~~~~~~~ which is based on
program s t ruc ture .

It is assumed that the program has been written in s tructured or
modular form so that decomposition into its constituent parts is sim ple.
Further , we assume that via analysis of the program the decomposition can
be related to several paths or othe r functional s t ruc tures  w ithin the pro-
gram .

• The model is constructed based upon the f requenc ies  with which each
of the j paths are  run , ( f . ) ,  the running time of each path , (t . ) ,  and the

probability of error  along each path , (q~)

Several methods of calculating or measur ing the f~. t
3
, and q~ 

para-

meters  are suggested.  In fact it is possible to use one techni que (historical
data) to produce crude estimates at the start of the desi gn , and refine the
estimates with more accurate values as the design progresses. Given the
existenc e of such a model , we can consider the application of three im-

• portant design techn iques which are impossible with a macroscopic model:

( 1 ) A pport ionment  of the software re l iab il i ty(or  mean time to fa i lure)
specification amon g the subsystems so each design team has their
own goal to meet. The apportionment is obviously done so that the
subsystem reliabilities combine to yield a system reliability which
meets system specifications.

31



• (2)  If desi gn proceeds either bottom up or top down , eventually there is
a system integration phase where all parts are put together and tr ied

• out . The macroscopic models developed previously cou d not be ap-
plied before the system reached the integration stage. However , the
new microscopic model proposed can be used to combine the results
of the module development phases to predict a preliminary software
reliability index before the system integration phase.

(3) The microscopic model is based upon measurements made on the
software design. Such measurements and analyses performed on the
software lead to a more disciplined desi gn and provide insight into
how the module performanc e relates to overall software system per-
formance.

3. 7 . 2 Micro Decomposition Model

The micro decomposition model which will be proposed in this sec-
tion is based upon several assumptions. We first assume that the
program has been desi gned using a s t ructured or modular philosophy
and as a result there emerges a natural structure of the program
which can be described as consisting of a number of paths, cases,
parts , modules , or subprograms. The decomposition focuses about
this natural structure. In general we will primarily use the term
paths from now on to designate the paths , cases , parts , modules ,
subprogram s, or any other important substructure. We also assume
that the majority of the paths are independent of each other. (One
could probably tolerate some type of dependenc e in the model if it
were limited. )

The decomposition model will be developed from the probabilistic
viewpoint of relative-frequency. We will hypothesize a sequenc e of
tests which either uncover a bug (failure) or run to completion with-
out uncovering a bug (success) .  We beg in our development of the
model by defining the following variables and parameters:

• N The number of tests

i The number of software paths (cases , parts , modules , etc.)

t. ~ Time to run case i (if time is not deterministic we can sub-
stitute the mean value of t .,  i. e .,  t . ) .

1 1

q. ~ Probability of er ror  on each run of case i (The probability
~ of no er ror  = 1 - q~).

S Frequency with which case i is run.

Total number of fai lures in N tests.

H S Total cumulative test time in hours .

32



‘~T : ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Note that in the above set of definitions we have defined N as the number of
tests. Thus , we are modeling actual or simulated operation by a succession
of N tests (pat h t raversals)  of the system. We also assume the input
data varies on each traversal. This is the reason why we have assigned a
constant as the probability of encountering a bug on each run ,

If there were no variation in input parameters, and three successive
tests each traversed path j, then the probability of encountering an error
on the f i r s t  trial would be 

~~~~~ 
The conditional probability of encountering

a bug on the second traversal of the same path with the same parameters
is unity . Similarly, the probability on the same path with the same para-
meters the third time is also unity . Thus , the probability of a bug on three
t raversals oi path j is q~

x 1 x I = q
3
.

Since we have assumed a variation in parameters on each run in our
model and each test is independent , then the probability of encountering one
bug on three successive traversals of path j is given by the binomial distri-
bution as 3

P(1 e r ror in three tr ials) ~(~) ~~ (1_ q ~)
2 (1)

Similarly, the expected number of occurences in a probabilistic process
governed by a binomial distribution is

Number of Occurrences Nq (2)

where N is the number of trials and q the probability of occurrence.

3. 7 . 3 Development of the Model

We can now compute the total number of fai lures nf in N tests. The

tests are distributed along each path such that Nf 1 tests t raverse path 1 ,

Nf 2 tests t raverse path 2 , etc. Thus , successive application of Eq. 2 to

each of the i paths yields for the number of fai lures in N tests.

flf = Nf 1q 1 + Nf 2q 2 + Nf~q~ (3)

We can now compute the system probability of failure on any one test run ,
q0, by taking the ratio of fl f /N as N approaches in f in i ty

N — a o ~~~
=

~~~ 

f~q~ (4)

Similarly we can compute the system failure rate , z , by f i r s t  com-

puting the total number of test hours.  First we compute the total number of

33



~~i~:_~~~~~~~~ TT~ ~T 1II~ —

t raversals of path i as Nf
~ 

as was previously done. Out of these tray--
ersals the fraction p. will be successful  and will accumulate N xf . xp .  xt .

1 1 1
hours of successful  operation. If we assume that the time to fa i lure  distri-
bution for the Nf .q.  t raversals  which result in failure is rectangular , then
each t r ia l  which results in fai lure run s t~ /2 hours on the average before
fai lure.  Thus , the total test time accumulated in N runs is g iven by

H = Nf 1p 1t 1 ÷ N11q 1 -4- ÷ Nf 2p2t 2 + Nf 2 q 2 
_

~~
_

+ . . . .  N f . p~t . + Nf .q 1~~~~ = N  ~~ 1
f
~
t 1~~~1 +~~~~ ) ( 5 )

Subs t i tu t ion  fo r  p~ l - q .  in Eq. (5 )  and simplif icat ion y ields

i q.
II = N v ft. (1- —

~
- ) (6)

— i i  2J= 1

we now c om p u t e  t he sys tem f a i lu r e  rate z as

- 
fl

f
z = u r n  -

~~~
— (7)

0 N— .oo

and subst i tu t ion f rom E quat ions (3) and (6) into (7) y ields in the limit

V f.q.

z = ~~~~~. (8)o q.
~
‘ f . (1 - -J-) t .

~

3. 7. 4 Special Cases

We now wish to examine equat ions (4) and (8) under special cons t ra in t s .
These are listed in Table 1 . Note that the units of z 0 a re clearly seen f rom
case 4 to be fa i lures per hour , or just h r . -

3. 7 . 5 Measurement of Parameters

In order to implement the model developed in the p rev ious sections
we must develop numerica l values for the sets of pa ramete r s ~~ q~, and t . .

34


~~~~ T iJTT T~ _ _ _

Of course  in keep ing with the concept of s t r uc tu r ed  p r o g r a m m i n g  an d leve l s
of s t r u c t u r e s  within levels , one could merely state that we cont inue  decom-
position to lower levels until we end up with a new set f ’ ,, q ’ ,, and t ’ . ,

para .neters at a lower level. Clearly, the answe r to th e ques t ion h ow we
could measure  or estimate our parameters  at a hi gh er leve l i s a lso , by
and large , an answer to how we would do the measurement  at a lower
level.

The parameter  sets f .  and t .  a re  related to the s t ruc tu re , s ize , and
com plexity of the control s t r u c t u re  and p rogram modules .  The deterrn ina-
tion of the f .  can be made by a stud y of the phys ica l  meaning  of the paths
ari d the di~ t r ibut ion s  of input pa ramete rs  which  d r ive  one along the pro-
gram paths. If the program is complex , or th ere  is rea lly no i n fo rm a t ion
on input stat ist ics , we c an take one of two approaches .  A s s u m e  f .  has  a
uniform distr ibut ion (see case 2 of Table 1) or inse r t  coun te r s  in -~ the
various paths , and exper i rnent ly de te rmine  the f~. The exper imenta l  ap-
proach r equ i r e s  that the program be in reasonabl y good shape so that a
simulated test p -ogram can be run . Clearl y, if a counter  cj  is placed  in
each path such that it reg i s te rs  one count for  each path t r a v e r s a l , and ~run N tests  then f .  c . f I ’-~.J .1

The set of t. parameters can also be either calculated or measured.
If the p rogram is -~ w ri tt en in a s sembly, machine or m i c r op r o g r a m r n in g
code , one can es t imate  qui te  c lose l y the run t ime of a sequence of code by
summing the operat ing t imes of each ins t ruction.  If the p rogram ~s com plex ,
one can wri te  an anal ys i s  program to read the code and pe r fo rm the t ime
analysis to determine t~, In the case of a higher level language ,
(FORTRAN , P L/ l , COBOL , e t c . )  the analy sis is more  com plex , because
each statement may expand into one to say ten machin e l anguage  s ta tement s .
Several approaches are possible.  First  of all , one can ob tain a core dump
of the machine language program and proceed as has been d e s c r i b e d .
Another alternative is to insert a block of higher level code in s ide  a 1)0 I
to K loop. The ioop is run for  a part icular  value of 1~ and the C . P . U .

• t ime of the computer recorded.  The value of K is changed and another  run
and value of C. P. U. t ime is recorded.  W ith about 3 value s of C. P . U. t ime
vs. K an accurate enough straight lin e or pol ynomial  model of r u n  t ime  vs .  K
can be fixed to the data. * One can then use the f o r m u l a  to pred ic t  the r u n
time of the actual code block by subst i tut ing the number  of r epe t i t ions .  T rue
value of K .)  Of course  if the program and a simulat ion is ava i lab le  one can
merely run several test runs for each path, record the times and u s e  a v e r -
age values for  each path.

is necessary to take several measurements for t wo  r e i~~ > 1 s . F i r s t  of
of ~‘.l1 there is program overhead which may va ry  f r o m  r un to run  depend-
ing on the operating system. ( Also there  is DO loop o v e r h e a d ) .  Second ,
the recording of C. P. U. time is not a c c u r a t e  for  short  run  t i m e s.  To
correct  for DO loor overhead and also system overhead , one can perform
the measurement with and without the code block in the loop and work
with the difference.

35



~~~~~~~~~~

-- - -

~~~~~~~~~~ T~~~~~~— : T T T

• TABLE 1. System Probability of Failure and
Failure Rule for  Special Cases

i q
Constraints q 

‘

~~~ f . q .  z = .
0 .—‘ J J 0 1 q.

~ £ / l _ —~l~~~~t.Li j ’ 2 ‘ jJ = l

Case I

q . < < ’ V f .q.
J~~

u
l f . t .

Case 2

q . < < l -

V

f f .. . f . f ~~~~ ~ V q. j 1
1 2 i t I .—‘ 3 1

J = 1 t .

Case 3

q~~< < 1

f f = ... f . f= ~~ q ig

q 1 = q 2 = .. .q ~~~tj

Case 4

• q~~< < 1

f = 1 = . . . f• = f = J~1 2 t i

q 1 q 2 . . . q q

t l =t 2 = . t

36

A
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -•~~~ •—~~~~—



~~~ T~~~TII~~II1~~~ _ _ _ _

• The estimation of the qj parameters is somewhat more diff icul t .
During the early stages of design or development one can try and estimate
q
~ using historical data.

One way to derive the qj parameter is to obtain
fa i lure rate data on the program and equate it to z0 using the assumptions
of case 3 or 4 of Table 1; and solve for q. . This process can be repeated
as the program is written and better value~ for q. determined. There is a
possibility that one could calculate qj from a more basic procedure.
Knuth has shown that most FORTRAN statement s are relatively
simple and fall into one of several classes. If each of these classes also
has a character is t ic e r r o r rate , then by analysis of the q • values for sev-
eral examples , we should be able to derive character is t ic 3values for the q.
parameters .

3. 7 . 6 Conclusions

The models developed above allows one to decompose a program into
a number of mod ules , paths , modes , or other functional entities. One can• then compute an expression for the software fa i lure rate in term s of
probabilistic and deterministic parameters which can be estimated from
historical data or determined by analysis or experiment. The model pro-
vides a clear cut procedure for relating the reliability of a large software
system to the reliability of its consti tuent parts . The model is presently
being applied to a number of modest size problems in order to obtain
typ ical pa rameter values an d va lidate th e model .

References

1 . M. Shooman , “Probabilistic Models for Software Reliability Predic-
tion ” , published in Probabilistic Models for Software, F re iberger
Editor , Academic Press, N.Y. 1972 , p. 485-502.

2. J . Jelinski and P. B. Moranda , “Software Reliability Research , ”
(Same source as Ref . l).

3. M. L. Shoornan , “Structural Models for Software Reliability Predic-
tion ” , Proceeding of the 2nd International Conference on Software
Eng ineer ing, October 1976 , San Francisco , California.

• SECTION IV

DiRECTiONS FOR NEXT PERIOD’S WORK

• In the next period we plan to work on the following:

1 . Adamowicz: Fur ther work on m e a s u r e s for the evaluation of
software.

• • 37

• 2. Baggj: Completion of a report on the const ruct ion of an auto-
matic dr iver for Shooman ’ s mode l of test cover ing
each program path.

3. Laemmel: Continuation of studies on statistical program test-
ing.

4. Marshall : A pp lication of g raph theory to statistical sampling
approaches for software rel iabil i ty.

5. Ruston and A pplications of software physic s to complexity
Berlinger: measures.

6. Shooman and Continuation of work on levels of p rogram tes t ing .
Popkin:

7. Shooman and Experimental tests for (I) validation of seeding!
Ruston : tagging estimates (2) Shooman ’s ex tended debug g ing

models (incorporat ing e r r o r s generated during the
debugging p rocess) , and (3) obtaining d ata for ver i f i -
cation of software physics and other comp lexity
measures .

SECTION V

PROFESSIONAL ACTIVITIES

This section summarizes the professional activities of the research
personnel working on this contract .

5. 1 Published and Submitted Papers and Reports

1 . C. Marshall , “Contributions to the Theory of Availabil i ty, ”
Report No. Poly EE /E p 76-004 EER 121 , Polytechnic Institute of
New York , February 1976.

•
•
. 2. S. N. Mohanty and M. Adamowicz , “Proposed Measures for the

Evaluation of Software,” to appear in Proceedings of the Sym-
posium on Computer Software Eng ineer ing, 1976 .

3. L. Shaw and M. Shooman , “Confidence Bounds and Propagation of
Uncertainties in System Availabil i ty and Reliability Computations , ”
Technical Report N 0 0 0 14 - 6 7 - A - 0 4 3 8 - 0 0 13 , Pol y EE/E P 75-002
Polytechnic Institute of New York , January 1976.

4 . L. Shaw and S. Sinkar , “Redundant Spares Allocation to Reduce
Reliability Costs , ” Naval Research Logistics Quarterly vol. 23 ,
No. 2 , pp. 17 9 - 1 9 4 , June 1 1 7 6 .

38

• • - •

~

• • •

~

• •
~~~~~

••

~~
-

~~~~~~~ • •~~~~~~~ • • -~~-


5. M . L . Shooman , “Recen t Developments in Sof twa re Reliabi l i ty -

The State of the Ar t , ” Proceedings of the Thir teenth IEEE Computer
Society In te rna t iona l C o n f e r e n ce , Washington , D.C ., September
197 1 .

• 6. M . L. Shooman , ‘ S t ruc tu ra l Models for Sof tware Re l i ab i l i ty Predic-
tion , ” Second Nat ional Conference on Sof tware Rel iabi l i ty , October

• t 1976 , San Franc i sco , Cal i forn ia .

7 . M . L Shooman and NI . I . Bois ky, “T ypes , Dis t r ibut ion , and Test
• • Correct ion Times for P r o g r a m m i n g E r r o r s , “ IEEE Transact ions

on Reliabil i ty, vol. R - 2 5 , No. 2 , pp. 6 ’ -7 0 , June 1~~76.

8. M . L. Shooman , M. Horodniceanu , and E. •T . Cantil l i , “System
Safety A pp lied to Transpor ta t ion Sys tems , “Proceedings of Inter
Society Conference on T r a n s p o r t a t i o n , Los A n g e l e s , C Ali f o r n i a ,
Jul y 1976.

9 . M . L. Shooman and S. N a t a r a j a n , “Ef f ec t of Manpower Dep lo yment
and E r r o r Genera t ion on Sof tware Rel iabi l i t y, “Proceed ings of the
M R I Sy m p o s i u m on Compute r Sof tware Eng i n e e r i n g , 1976.

10. M. L. Shooman and H. Rus ton , “Cost R e d u c i n g , Hi gh Reliabil i ty
Programming Techn iques , ” 19 76 OR SA/TIMS Joint Nat ional Meet-
ing , N o v e m b e r 1976 .

i i . M . L. Shooman and S. Sinkar , “Genera t ion of Rel iab i l i ty and Safety
Data by A nal ys i s of Expert Opin ion ,” •Proceedings 19 77 Annua l
Rel iab i l i ty and Maintainabi l i ty Symposium , Philadel phia , Pa.

12. M . L. Shooman and A. K , Tr ived i , “A Many-State Markov Model for
• Computer Software Pe r fo rmance Pa rame te r s , ” IEEE Transac t ions

on Rel iabi l i ty, vol. R - 2 5 , No. 2 , pp. 66-68 , June 1976 .

13. M. Horodn iceanu , E. Cantilly, M. Shooman , L. P igna ta ro , “Trans-
porta t ion System Safety Methodology, ” F i r s t Year Final Report ,
November 1976 , U .S . Dept . of Transpor ta t ion , Contract DOT -
05-5024 1 .

14. M. H o r o d n i c e an u , E. Cant i ll y, M.Shooman , L. Pi griataro , “Trans-
• por tat ion System Safety - A Li te ra tu re Survey and Annoted Bibli-

ography, ” Repor t M a r c h 1 97 6 , U .S. Dept. of Transportation Con-
tract DOT-O5-50241.

15. B. R u d n e r , “Seed ing /Tagg ing Est imates of the Number of Software
E r r o r s , ” Pol y E E / E P Repor t , November 1976.

16. M. Shooman and S. Sinka r , “Generat ion of Rel iabi l i ty and Safety
Data by Anal ys is of Expert Opinion , ” Pol y E E / E P Report , January
1977

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



_ _

17 . M. Shooman and S. Natarajan , “Effect of Manpower Deployment and
Bug Generation on Software Er ro r  Model , ” Poly E E/ EP  7 6-007 ,

• SMART 102 , May 1976.

18. M. Shooman , “Software Reliabili ty: Analysis  and Prediction , ”
T ransactions 14th Annual Long Island Secion ASQC Conferenc e ,
A pril 10 , 1976.

19. M. Shooman, “Software Reliability: Analysis and Prediction,” pub-
lished in Generic Techni ques in Systems Reliability Assessment,
ed ited by E. Henley and 3. Lynn , Noordhoff International, Reading,
Massachuset ts .

20. S. Amster  and M. Shooman , “Software Reliability: An Overview , ”
published in Reliability and Fault Tree  Analysis , ed it ed by R. Barlow
et al . ,  SIAM , Philadelphia , 1975.

21 . M. Shooman , “Program Complexity, Run-Time , and Storage
Models , ” invited for presentation at Annual Sprin g ORSA /T 1MS
Conference , San Francisco, May 9-11 , 1977.

22. A . Laemmel and M. Shooman , “Statistical (Natural)  Language
Theory and Computer Program Complexity, ” Poly EE /EP Repor t ,
Spring 1977.

• 23. M . Shooman , “Software Reliability Models and Measurement , ”
Infotech State of the Ar t  Conference on Reliable Software , Proceed-
ings , London , Eng land , March 1, 1977 .

24 . L. Shaw and M. Shooman , “Confidence Bounds and Propagation of
Uncertaint ies  in Systems Availability and Reliability Computations. ”
Naval Res.  Log istic s Quarterly (to appear) .

k ~ 5. 2 Talks and Seminars

• 1 . S. Habib , “Computer Hardware Organizat ion for  Programmers , ”
Seminar , PINY, September 1976.

2. H. Ruston , “Structured Programming with PL/ 1  and FORTRAN
A pplications , Seminar, PINY , Augus t  1976.

3. D. Bagg i , “Design of Automatic Test Dr ivers , ” Seminar , PINY ,
June 197 6.

4. S. Habib , “User  Services in Remote Entry Environment , ” National
Science Foundation Conference on Computers in Undergraduate Edu-
cation , Binghamton , N . Y . ,  June 1976.

~~~~ 40


___________ _ _ _ _

5. M. L. Shooman and H. Ruston , “Cost Reduc ing, Hi gh Reliability
Programming Techniques,” 1976 ORSA /TIMS Joint National Meet-
ing, November 1976.

6. M. L. Shooman, “Recent Developments in Software Reliability -
The State of the Art , ” Thirteenth IEEE Computer Society Inter-

z national Conference , Washington , D. C ., September 1976.

7 . M. L. Shooman , “Structural Models for Software Reliability Predic-
t ion~’ Second National Conference on Software Reliability, October
1976, San Francisco, California.

8. M. L. Shooman and S. Natarajan , “Effect on Manpower Deployment
and Er ro r Generation on Software Reliability, ” MRI Symposium on

• Computer Software Eng ineerin g , 1976.

9. M . L. Shooman and S. Sinkar , “Generation of Reliability and Safety
Data by Analysis of Expert Op inion , ” 1977 Annual Reliability and
Maintainability Symposium , Philadelphia , Pennsy lvania.

5. 3 Symposia and Technical Soc ieties

1. M. L. Shooman , Chairman , Program Committee, Session Chairman ,
MRI Symposium on Computer Software Engineering, New York , NY ,
A pril 1976.

2. M. Adamowicz, S. Habib , A. Laemmel and H. Ruston , Members ,
Program Committee, MRI Symposium on Computer Software En-
gineering, New York, N.Y., April 1976.

5.4 Honors and Awards

1. Professors C. Marshall , H. Ruston and M. Shooman , are listed in
Who ’ s Who in the East.

2. Professor M. Shooman is l isted in Who ’s Who in Amer ica .

3. Professor M. Shooman has been chosen (with S. Sinkar) as winner
• of the 1977 P. K. McElroy Award for best technical paper at the

Annual Reliabilit y Symposium (see Ref.. 12). Dr. Shooman has won
•

•
this award previously in 1967 and 197 1, making him the only three-
time winne r in the 22 years of the Symposium.


~~~~~~~~~~~~~~~~~~~~ - - -- —~~~~~~~~~~~ -

5. 5 Committees

1. M. L. Shooman , Member , IEEE ADCOM (Administrat ive Committee)
of the Group on Reliability.

2. M. L. Shooman, Member , Executive Committee, IEEE Computer
• Society Technical Committee on Software Eng ineering.

• 3. M. L. Shooman, Member , NASA Advisory Committee on Guidance ,
Control and Information Systems.

4. S. Habib , Chairman, National Lectureship Committee of the As-
sociation for Computing Machinery.

5. S. Habib , Chairman, SIGMICRO (Special interest Group on Micro-
programming) of ACM.

*U.S. GOVERNMENT PRINTING OFFICE 1977-714-025/161

• I

H

i

.

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _  _ _ _



METRIC SYSTEM

BASE UNITS:
_~~/~~~t Un it SI Symbol orinuls

length metre m
mass kilogram kg
time second s• electric current ampere A
thermod ynamic temperature kelv in K
amount of substance mole mol
lum inous intensity candela cd

SUPPLEMENTARY UNITS:
plane angle radian rad
solid angle steradian sr

DERIVED UNITS:
Acceleration metre per second squared -.. mis
activity (of a ra dioactive source) disintegration per second •• (disint egra tion) is
angular acceleration radian per second squared -. - radls
angular velocity radian per second - -- red/s
area square metre • ..  m
density kilogram per cubic metre •••  kg/rn
electric capacitance farad F A.s/V
electrical conductance Siemens S AN
electric field strength volt per metre ••• Vim
electric inductance henry H V .a/A
electric potential difference volt V W/A
electric resistance ohm VIA
electromotive force volt V WIA
energy j oule J N.m
entropy joule per kelvin • • •

force newton N k g.mls
frequency hertz Hz (cycle)!,

• 611am inance lax Ix lmlm
luminance candela per squa re metre •- • cd!m
luminous flux lumen lm cd.sr
magnetic field strength ampere per metre - • - Aim
magnetic flux weber Wb V.a
magnetic flux density tesla T Wb!m
magnetomotive force amp ere A - • -
power watt W 3/s
pressure pascal Pa Nim
quantity of electricity coulomb C A.s
quantity of hea t joule J N.m
radiant intensity watt per steradian •••  Wi ar

• specific heat joule per kilogram-kelvin J ik g.I (
stress pascal Pa Nim
thermal conductivity watt per metre-kelvin • • • Wim.K
velocity metre per second •• mis
viscosity , dynamic pascal-second . •• Pa .s
viscosity, kinematic square metre per second • • m/s
voltage volt V WIA
volume cubic metre • m
wavenumber reciprocal metre • (wave)/m
work j oule I N.m

SI PREFIXES :

_~.Iultipln ;ation Factors Prefix SI Symbol

1 000 000 000 000 = 1012 1 ,ra
1 000 000 000 = 10” giga (;

1 000 000 10’ mege M
1 000 = 10 ’ kIl o k

100 = 102 hecto ’ h
10 = 10’ deka ’ da
0.1 = 10 ’  dad ’ d

ooi = i n — ’  centi’
000 1 = 10~~~ mu ll ni

0 000 001 = 1 0’  mics) M
0 00(1 (1(10 001 = 1 0 ” naflo

0 006) 000 000 001 -= 10 ‘‘ pico
0 000 000 000 (10(1 001 10 ’’ femtn

• (1 000 000 000 000 000 001 10_ 1~ sit ,,
• • & To be avoided wher e possible.

— ~~~ - —~~~~~ • • •~~~~ 
-_ -__

~



- I

MISSiON
• of

• Ronw Air Development Center

RI~X plans and conducts research , exploratory and advanced
development programs in command, control , and communications
(C 3) activities, and in the C3 areas of inf ormatior sciences
and intelligence. The principal technica l mission area s
are communications , electromagnetic guidance and control ,
surveillance of ground and aerospace objects, intelligence
data collection and handling, information system technology,
ionospheric propagation, solid state sciences, microwave
physics and electronic reliabil ity, maintainabilitg and
compatibility.

0~)JTSO~,,

‘ ,~~‘. ~~~~I ~4
U rn

2

- i91~


